embAARC

Timer and ISR

Overview

embARC is an open software platform designed to help accelerate the development and
production of embedded systems based on DesignWare® ARC® processors.

This article provides a step by step guide to create your own simple timer and ISR example in
embARC to becoming more familiar with ARC timer and interrupt handling in software.

An interrupt is a mechanism to respond to interrupt signals emitted by hardware or software in
embedded systems. An Interrupt Service Routine (ISR) is the function to deal with the
immediate event generated by a given interrupt. A timer is one of many peripherals that may
provide interrupt signals.

More information on ARC Interrupts can be found from embARC Documentation under \doc\
embARC_Document.html

embAR

, 2015.05

Main Page Related Pages Modules. ‘
¥ embARC -
» emBARC Inoducon Exception and Interrupt
¥ ARC -
ARC Exception and Interrupt
Description
ERSELY The ARCvZ2 processor is designed to allow exceplions to be taken and handled from user mode or kemel mede, and from interrupt service routines. All
EXceptinniondipiees entry to an exception handler.
Bt eibuichon: The exceptions can be divided into two parts: CPU exception and interrupt exception. CPU exceptions are friggered by errors such as wrong instructior
Resource Definitions exceplions are triggered by device interrupts and are always asynchronous.
FgEcoassiin/Resouces) Exception vectors are fetched in the instruction space (ICCM, main memory, but not DGCM). Every exception has the following information
Related files
» Device - Vector Name is a symbolic equivalent fo the vector number.
» Board + Vector Number is a unigue &-bit index into the table of exception or interrupt vectors.
» 0S - Vector Offset is a offset value calculated as four times the vector numbers (vector offset = 4*vector_number), which is used to determine the po:
» Middleware + Cause Code is a 8-bit number fo identify the exact cause of an exception.
» Example - Parameter is a 3-bitfield to pass a single parameter from exception to the exception handler and identify exceptions with the same cause code.

» ChangeLog
" For more details, please refer to the ARCv2 ISA Programmer’s Reference Manual (PRM).
icense

» Modules Exception and Interrupt Processing in embARC

A basic exception and interrupt processing framework is implemented in embARC. Through this framework, users can handle specific exception and/or
underlying details of saving and restoring registers or operating on aux registers.

For CPU exceptions and interrupts, entry is called first, then handler is called in entry. Users can define their own entry using exe_entry_install.

A standard interrupt processing model is shown in the picture below.

NOTE: This article assumes the reader is already familiar with embARC. If this is your first
project with embARC, please start by first reading our “Quick start” article to ensure your
development environment is properly setup before you begin.

embAARC

Development Environment

Development host operating system:

» Windows 7
Development Toolchain for Target Platform:

» GNU Toolchain for DWC ARC Processors, version 2015.06
Target platform:

» ARC EM Starter Kit (EMSK), version 1.1.
Getting Started

Creating the project “isr_timer” in embARC

1) Create the folder \embARC\example\emsk\isr_timer.

2) Add two files, makefile and main.c into the folder \embARC\example\emsk\isr_timer.
Modify the makefile to reflect appropriate configuration choices for BOARD, BD_VER
and CUR_CORE as follows:

APPL 2= isr_timer

BOARD ?= emsk
BD_VER 2= 11
CUR_CORE 2= arcemb

Edit main.c file in \embARC\example\emsk\isr_timer to add source code shown in the
capture below.

embAARC

board_init();
cpu_unlock();

EMBARC_PRINTF("Hello embARC! Thi : about how to use timer and isr.\n");

3) Add ISR callback functions “timer0_isr” and “timer1_isr” in main.c. These ISR functions
are called after timerO or timerl hardware raises an interrupt. In this example, the ISR is
simply clearing the pending interrupt flag, increasing an interrupt count counter and
printing a message to the console.

timer_int clear(TIMER_@);
to++;
EMBARC_PRINTF("timer® interrupt: 3

timer_int_clear(TIMER_1);
Bl
EMBARC_PRINTF(“timerl interrupt: %

4) Initialize the timer0 and timer1 in the EMSK in the main.c file. “BOARD_CPU_CLOCK" is
the timer frequency in the EMSK. The function “int_handler_install” is used to register
ISR functions. The following configuration of “timer_start” means the timer0 interrupt
will be triggered every second, and the timer1 interrupt will be triggered every 3
seconds.

embAARC

board_init();

cpu_unlock();

ARC_PRINTF("Hello embARC! This is - ample about | to use timer and is

int_handler install(INTNO_TIMER®, timer® isr);
int_enable(INTNO_TIMER®);

timer_start(TIMER_@, TIMER CTRL_IE, BOARD CPU CLO

(timer_present(TIMER_1}}
EMBARC_PRINTF (

timer_current(TIMER_1, Zval);
E val);

int_handler_install(INTNO_TIMERL, timerl_isr);
int_enable(INTNO_TIMER1);

timer_start(TIMER_1, TIMER_CTRL_IE, 3“BOARD_CPU_CLOCK);

5) From the command line, go to \embARC\example\emsk\isr_timer . Compile for EMSK
1.1 and ARC EM®6 processor to generate isr_timer_gnu_arcem6.elf:
make TOOLCHAIN=gnu BD_VER=11 CUR_CORE=arcemé

6) Enter “make run TOOLCHAIN=gnu BD_VER=11 CUR_CORE=arcem6” in command line to
run the program on the target.

aKe run

embAARC

The interrupt response will be shown on the terminal.

% COM4:115200baud - Tera Term VT ol o

NOTE: Existing application \embARC\example\emsk\timer is very similar and available as part
of the embARC software from https://forums.embarc.org/categories/downloads.

For any additional support on embARC, please post a question on embARC Forums at
https://forums.embarc.org/

embAARC

https://forums.embarc.org/categories/downloads
https://forums.embarc.org/

